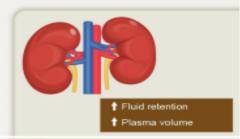
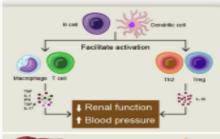


Kidney disorders 777 Diabetes mellitus & Hypertension

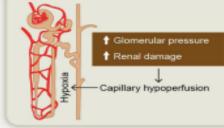
Dr. Firouzeh Moeinzadeh
Associate professor of Nephrology
Isfahan University of Medical Sciences

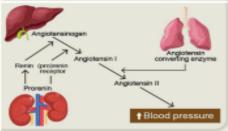



Hypertension & Kidney diseases

Association Between Chronic Kidney Disease (CKD) and Hypertension

CKD and hypertension have a complex correlation, both aggravating the progression of one another


CKD weakens renal function, leading to fluid retention and increased plasma volume

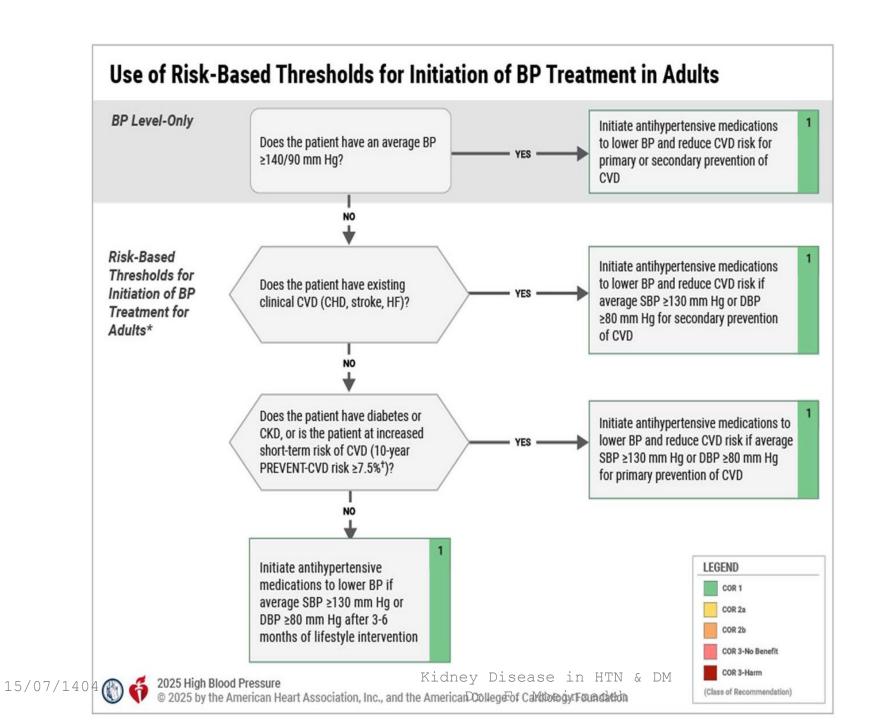


Inflammatory cytokines worsen renal damage and hypertension

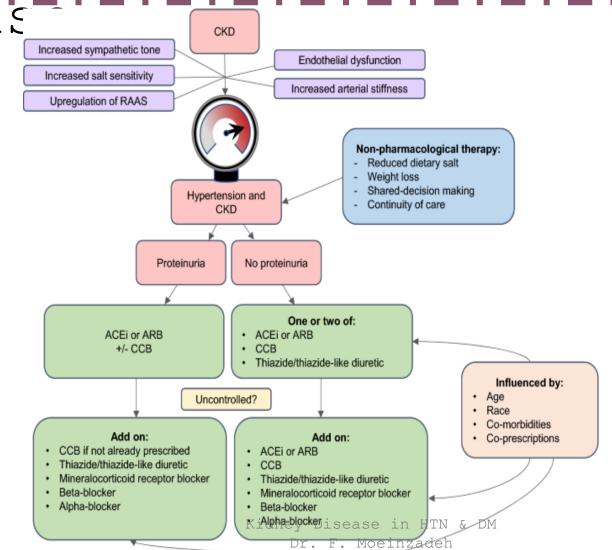
Hypertension damages kidney function, thereby worsening CKD

The renin-angiotensin system (RAS) plays a crucial role in both CKD and hypertension, intertwining their progression

CONCLUSION


- Meticulous blood pressure control can delay CKD progression
- Antihypertensive therapy is essential in managing CKD
- Blood pressure targets should match CKD stage and presence of diabetes
- RAS inhibitors are a key intervention in patients with CKD with proteinuria

Non-Pharmacological Treatment


- reducing dietary sodium intake to a target of < 50 mmol/day (~3 g/day of salt) decreased systolic BP by a further ~10 mmHg
- restriction to a target < 100 mmol/day (~6 g/day of salt) has also demonstrated a reduction in proteinuria by~25%

Non-Pharmacological Treatment

- Weight loss is effective in reducing BP and proteinuria and may slow CKD progression
- In overweight patients (body mass index $[BMI] > 27 \text{ kg/m}^2$) with CKD and proteinuria (>1 g/24 h), a mean weight loss of ~4% can reduce proteinuria by ~30%

Management flow-chart of hypertension in chronic kidney diseas

Definition of diabetic kidney disease

- Approximately 20% to 40% of patients with type 1 or type 2 diabetes mellitus develop diabetic kidney disease
 - Persistent albuminuria (> 300 mg/24 h, or > 300 mg/g creatinine) confirmed in at least 2 of 3 samples
 - A relentless decline in glomerular filtration rate (GFR)

Risk factors

- Poor glycaemic control
- Hyperlipidaemia
- Hypertension
- Genetic predisposition
- Ethnicity
- Long disease duration
- Smoking

Natural history of diabetic nephropathy

Acute renal hypertrophy-hyperfunction

▼ Normoalbuminuria

10 to 15 years

Microalbuminuria

(incipient diabetic nephropathy)

Proteinuria

(clinical overt diabetic nephropathy)

Kidney Disease in HTN & DM Dr. F. Moeinzadeh

Clinical course

- The first clinical sign is moderately increased urine albumin excretion (microalbuminuria: 30-300 mg/24 h, or 30-300 mg/g creatinine; albuminuria grade A2).
- Untreated microalbuminuria will gradually worsen, reaching clinical proteinuria or severely increased albuminuria (albuminuria grade A3) over 5 to 15 years.
- GFR then begins to decline, and without treatment, end-stage renal failure is likely to result in 5 to 7 years

Diagnosis and Detection of Microalbuminuria

- Microalbuminuria: elevation in albumin excretion in 2 of 3 spot urine samples that persists over a three- to six-month period.
- In this period, microalbuminuria should be positive in 2 or more than 2 tests .
- Urinary albumin excretion may be elevated independent of kidney disease by factors such as severe exercise within 24 hours, severe UTI, menstruation, fever, heart failure, and marked hyperglycemia.

Diagnosis and Detection of Microalbuminuria

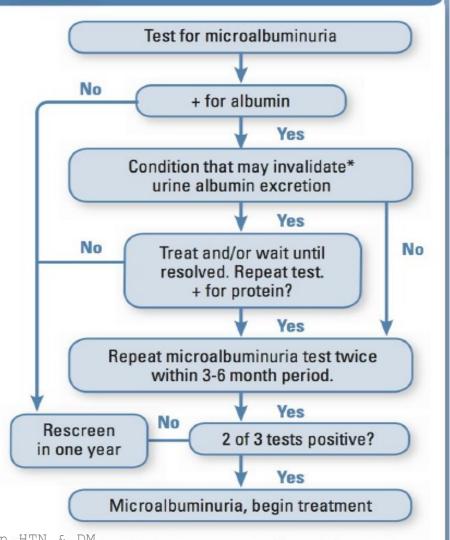
- 24-hour urine collection: the initial gold standard
- Screening can be more simply achieved by a timed urine collection or measurement of the urine albumin concentration on an early morning
- Complete collection is often difficult, and so this method is usually restricted to those with established diabetic kidney disease

Urine albumin-to-creatinine ratio

- An untimed urinary sample
- The preferred screening strategy for microalbuminuria in all diabetics.
- It is simple to perform and inexpensive, and repeat values can be easily obtained to ascertain that microalbuminuria, if present, is persistent.

	24h albumin excretion rate	Spot urinary microalbumin	Alb/ Cr ratio
Microalbuminuria	30-299 mg/24h	30-299 mg/L	30-299 mg/g
Macroalbuminuria	□ 300 mg/24h	□ 300 mg/L	□ 300 mg/g

Table 7 | Relationship among categories for albuminuria and proteinuria


	Categories				
Measure	Normal to mildly increased (A1)	Moderately increased (A2)	Severely increased (A3)		
AER (mg/24 hours)	<30	30-300	>300		
PER (mg/24 hours)	<150	150-500	>500		
ACR					
(mg/mmol)	<3	3–30	>30		
(mg/g)	< 30	30-300	>300		
PCR					
(mg/mmol)	<15	15-50	>50		
(mg/g)	<150	150-500	>500		
Protein reagent strip	Negative to trace	Trace to +	+ or greater		

Screening for microalbuminuria

When?

Begin screening:

- In type 1 diabetes 5 years after diagnosis, then annually
- In type 2 diabetes at diagnosis, then annually

Kidney Disease in HTN & DM hours, infection, fever, congestive heart failure, marked hyperglycemia, Dr. F. Moeinzapdegrancy, marked hypertension, urinary tract infection, and hematuria.

How?

Natural history of microalbuminuria in diabetes mellitus

- The development of significant albuminuria before 5 years' or after 25 years' duration of T1DM decreases the likelihood of diabetic nephropathy.
- The onset of T2DM is generally unknown, one cannot as reliably use the natural history timeline to assist in diagnosis

Diabetic Nephropathy AND Diabetic Retinopathy

- •95% of patients with T1DM and DN also have DR, so the absence of retinopathy may imply a diagnosis other than DN
- •T2DM: DR is concordant with DN in only about 60% to 65% of cases; thus, its absence does not generate a high negative

Treatment of Diabetic Nephropathy

- •Cardiovascular risk reduction
- •Glycemic control
- •BP control
- Inhibition of the RAS

Reduction in protein intake

- Strong evidence indicates that high dietary protein intake increases risk of diabetic Nephropathy & its progression to ESRD.
- Lower intake of proteins has a lower incidence of albuminuria.
- It reduces Hyperfiltration & intraglomerular pressure.
- ADA recommends 0.8 gr/kg in diabetic nephropathy.

Smoking cessation

- In both type 1 & 2 -It affects renal **Hemodynamics**, increases **Catecholamines** production.
- Patients With DM I & II who smoke have a greater risk of **Urine albuminuria**, and **progression to ESRD is about twice** as rapid than non-smokers.

Lipid lowering therapy

- Hypercholesterolaemia in progressive glomerular injury
- Reduction in cholesterol: reduce the rate of decline of GFR
- Reduction of AER in normotensive ,microalbuminuric type 2 diabetic patients has also observed on statin therapy.

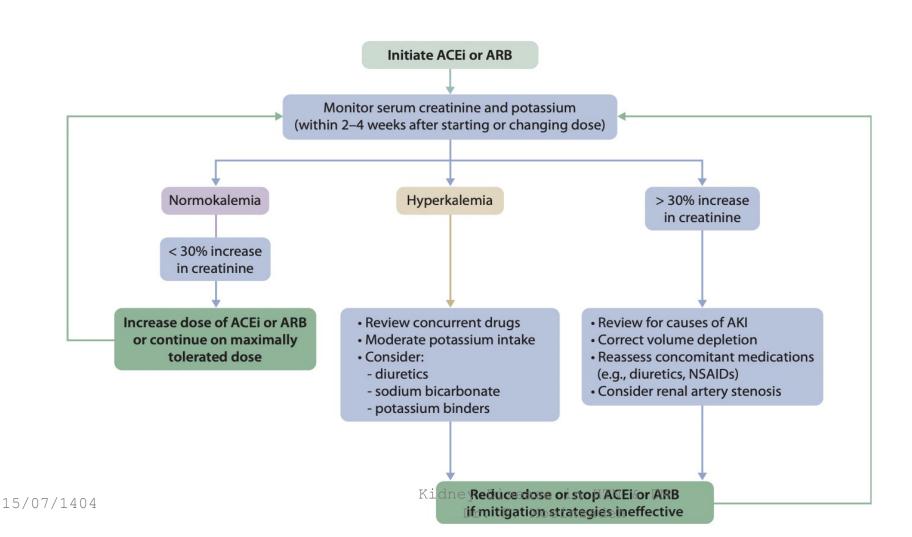
RAS blockers

- RAS blockade using various drugs, including ACE inhibitors, ARBs, direct renin inhibitors, and mineralocorticoid antagonists.
- RAS inhibition has proved to be the single most effective therapy for slowing the progression of diabetic nephropathy

RAS blockers

- Efficacy of ACEIs independent of BP control in slowing the progression of diabetic nephropathy in patients with T1DM and overt proteinuria.
- Although RAS blockade with more than 1 agent may be effective in reducing proteinuria, the adverse-event profile (hyperkalemia, acute kidney injury, and increased cardiovascular events) and no benefit in preventing end-stage kidney disease preclude its general use for the treatment of diabetic nephropathy.

When I use ACEIs/ARBs in diabetic nephropathy?


- There is no evidence that ACE inhibitors or ARBs are effective for the primary prevention of microalbuminuria in patients with type 1 diabetes who are normoalbuminuric and normotensive.
- These patients should be screened yearly for microalbuminuria after five years and angiotensin inhibition initiated if persistent microalbuminuria is documented

When I use ACEIs/ARBs in diabetic nephropathy?

- Studies in normoalbuminuric normotensive patients with type 2 diabetes are fewer but also show no benefit.
- For normoalbuminuric patients with type 2 diabetes and hypertension, or pre-existing CVD, use of ACE-Is with or without diuretics reduces the absolute risk of developing microalbuminuria by 2-4% over 4-5 years.

•We suggest using an ACE-I or an ARB in normotensive patients with diabetes and albuminuria levels >30 mg/g who are at high risk of DKD or its progression. (2C)

Monitoring of serum Cr and K during ACEi or ARB treatment—dose adjustment and monitoring of side effects.

28

Other considerations

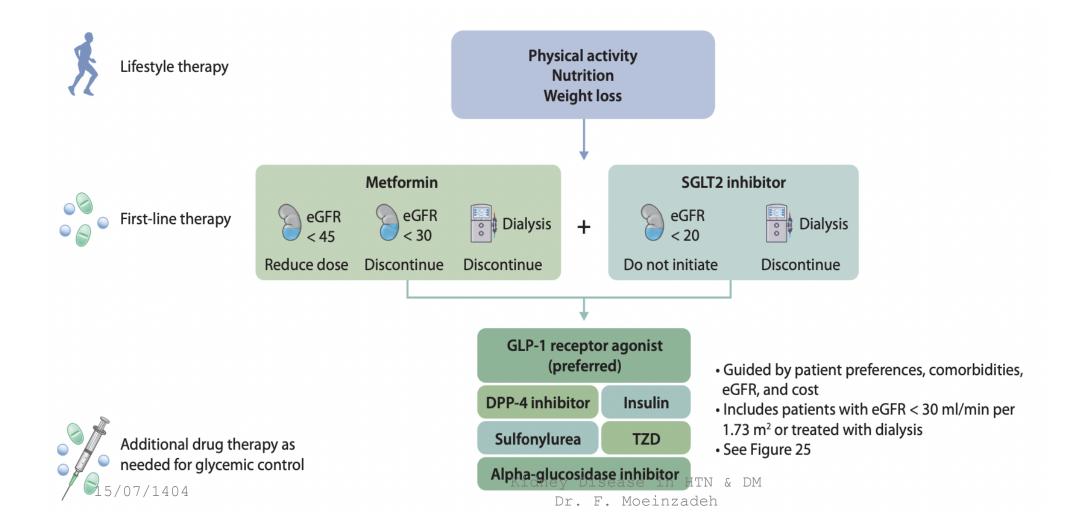
- Most sympathetic blockers and dihydropyridine CCB do not have significant antiproteinuric action despite effective blood pressure reduction, unlike nondihydropyridine CCB.
- •Only diltiazem and verapamil appear to be as consistently effective as an ACE inhibitor or ARB in lowering protein excretion in diabetic patients

Other considerations

•Aldosterone antagonists appear to reduce proteinuria when used alone, and to have an additive effect on proteinuria when used in combination with an ACE inhibitor or an ARB in both type 1 and type 2 diabetes.

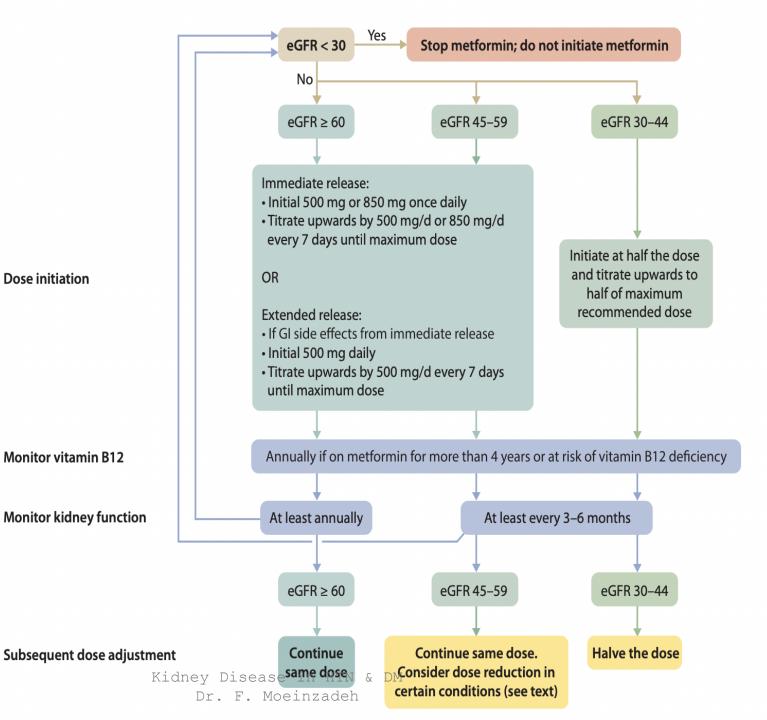
Sodium glucose transporter 2 inhibitors

- SGLT2 inhibitors have also been suggested to have **favorable renal effects** in addition to lowering of glucose.
- They lower blood pressure, albuminuria and body weight.
- Hyperfiltration was ameliorated with empagliflozin in type 1 diabetes and may be very important for the potential renoprotective effect of this class of agents .


Practical provider guide to initiating SGLT2 inhibitors in patients with type 2 diabetes and CKD

	Assessment	Intervention	Follow-up
Patient selection	Eligible patients: • eGFR ≥20 ml/min/1.73 m² High priority features: • ACR ≥200 mg/g [≥20 mg/mmol] • Heart failure Potential contraindications: • Genital infection risk • Diabetic ketoacidosis • Foot ulcers • Immunosuppression	SGLT2 inhibitor with proven benefits: • Canagliflozin 100 mg • Dapagliflozin 10 mg • Empagliflozin 10 mg Education: • Sick day protocol* • Perioperative care† • Foot care	 Assess adverse effects Review knowledge Anticipate an acute drop in eGFR, which is generally not a reason to stop the SGLT2 inhibitor
Glycemia	Hypoglycemia risk? • Insulin or sulfonylurea • History of severe hypoglycemia • HbA1c at or below goal	Glycomia monitoring	Ask about hypoglycemia Reduce sulfonylurea or insulin if needed
Volume 7/1404	Volume depletion risk? • Concurrent diuretic use • Tenuous volume status • History of AKI	rotatilo doptotion dymptomo	Re-assess volume Reduce concomitant diuretic if needed

SGLT2Is


- A reversible decrease in the eGFR with commencement of SGLT2i treatment may occur and is generally not an indication to discontinue therapy.
- Once an SGLT2i is initiated, it is reasonable to continue an SGLT2i even if the eGFR falls below 20 ml/min per 1.73 m2, unless it is not tolerated or kidney replacement therapy is initiated.

Glucose-lowering therapies in patients with T2D and CKD

Suggeste approach in dosing metformin based on the level of kidney function

Dose initiation

Dose adjustments for eGFR <45 ml/min/1.73 m2

	Stage 3b (eGFR 30–44 mL/min/1.73 m²)	Stage 4 (eGFR 15-29 mL/min/1.73 m²)		Stage 5 (eGFR <15 mL/min/1.73 m²)	
Metformin	Reduce dose to 1000 mg/day	Contraindicated			
Insulin	Initiate and titrate conservatively to avoid hypoglycemia				
SGLT2 inhibitors*					
Canagliflozin	Maximum 100 mg daily	Initiation not recommended; may continue 100 mg daily if tolerated for kidney and CV benefit until dialysis			
Dapagliflozin	10 mg daily [†]	Initiation not recommended with eGFR <25 mL/min/1.73 m ² ; may continue if tolerated for kidney and CV benefit until dialysis			
Empagliflozin	10 mg	daily [‡] Initiation not recommended with eGFR mL/min/1.73 m²; may continue if tolerate kidney and CV benefit until dialysis		1.73 m ² ; may continue if tolerated for	
Ertugliflozin	Use not recommended with eGFR <45 mL/min/1.73 m ²			1.73 m²	
GLP-1 receptor agor	nists [§]				
Exenatide	Caution initiating or increasing dose; avoid once-weekly formulation	Use not recommended			
Dulaglutide	No dose adjustment required				
Liraglutide	No dose adjustment required				
Lixisenatide	No dose adjustment required Use not recommended			Use not recommended	
Semaglutide	No dose adjustment required				
DPP-4 inhibitors					
Alogliptin	Maximum 12.5 mg daily	Maximum 6.25 mg daily			
Linagliptin	No dose adjustment required				
Saxagliptin	Maximum 2.5 mg daily				
Sitagliptin	Maximum 50 mg daily	Maximum 25 mg once daily			
Sulfonylureas (2nd	generation)				
Glimepiride	Initiate conservatively at 1 mg daily and titrate slowly to avoid hypoglycemia				
Glipizide	Initiate conservatively (e.g., 2.5 mg once daily) and titrate slowly to avoid hypoglycemia				
Glyburide	Use not recommended				
Thiazolidinediones					
Pioglitazone	oglitazone No dose adjustment required				
α-Glucosidase inhibitors					
<u> </u>	s No dose adjustment required	36			
Miglitol Dr.	F No dose adjustment required	Use not recommended			